
RD-R12l 568 A PRINCIPLED DESIGN FOR AN INTEGRATED COMPUTATIONAL
ENYIRONMENT(U) MASSACHUSETTS INST OF TECH CAMBRIDGE LAB
FOR COMPUTER SCIENCE A A DISESSA 12 JUL 82

UNCLASSIFIED MIT/LCS/TM-223 N88814-75-C-066i F/G 9/2 N

IhmhohhohmoiE
SMEONEhhhENDh

I lfllllllmlllf

Lii

6-

III1 an jMU8 125

t IIIIN _II__lil
1.0l 1.8

11111.2 11= 1161

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANOARDS - 1963 A

MASSACHUSETTS
LABORATORY FOR INSTITUTE OFCOMPUTER SCIENCE TECHNOLOGY

MIT/LCS/TM-223

A PRINCIPLED DESIGN

FOR AN INTEGRATED COMPUTATIONAL ENVIRONMENT

Andrea A. diSessa

Dm
July 1982 E

NOV 1 71982

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

82 11 17 11a

L. "SECURITY CLASSIFICATION OF THIS PAGE fR9afl Dote Entered)

READ INSTRUCTIONSREPORT DOCUMENTATION PAGE BEOR MPLETINOBE[FOREr COMPLETING FORM

I. REPORT NUMBER 1. GOVT ACCESSION NO. 3. RECIPIENT*S CATALOG NUMBER

MIT/LCS/TM-223 4'-4 / ' _

4. TITLE (and Subtitle) S. TYPE OF REPORT I PERIOD COVEREDfl A Principled Design for an Integrated Computation-
al Environment. Technical Memo July 1982

S. PERFORMING ORG. REPORT NUMBER

MIT/LCS/TM-22 3
I. AU TNOR(s) S. CONTRACT OR GRANT NUMBER(*)

Andrea A.-"
N00014-75-C0661

S. PERFORMING ORGANIZATION NAME AND ADDRESS I0. PROGRAM ELEMENT. PROJECT. TASKAREA S WORK UNIT NUMUERS
M.I.T. Laboratory for Computer Science

545 Technology Square

Cambridge, Ma. 02139

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

DARPA July 1982
1400 Wilson Boulevard 1. NUMBER OF PAGES

Arlington, Va. 22217 41
14. MONITORING AGENCY NAME G ADDRESS(i1 different from Controlnd ffl ice) IS. SECURITY CLASS. (of thle report)

Office of Naval Research
* Department of the Navy

Information Systems Program IS& DECI ASSI PICATION/ DOWNGRADING

Arlington, Va. 22217 SCHEDULE

IS. DISTRIBUTION STATEMENT (of Oile Report)

This document is approved for public sale and release, distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered In Block'2, It different m Roert)

Unlimited.

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reveree ide if necoeeeary and identify by block nminbw)

See back.

20. ABSTRACT (Continue an revee side If necessary and Identify by block niber)

See back.

DO IORM 1473 EDITION OF I NOV 6 IS OuSOLETE

0 SECURITY CLASSIFICATION OF THIS PAGE FRO Data 20Eam4

qGecv CLAU4FICATION OF TWO PAR &wte siuwee

A Principled Design

for an Integrated Computational Environment

Aadme A. C0em

Abstract

sw is a wffww pr igw desine to be 6wm bmw * an gud mmpWabon

Md -v umm 0 i e We of ea Lisp kwpinO bIwigee GLu Lemo Setowm). hi dWAn

from tMv i ehim ma, id IN umdrsiandlft km v~ M u o a A"metaphw

retoarce iiouliUft g Thin paeM a Ftbe a sol of Iwmf mid &d Iu~f

bomm tN wid fe m 6mm#o to I fht edi dectoam ned. cm ceim I e mid &W M

aiomgm In ~ is afed"

Mh~~: aetlel etapbt. aar models, andrtndahIlity. comter laiuage.

text editor. data baem Lnesge. Integrated computationul enviromowt.* nvIce

progrannIag.

This work wa maMd by Mie Advuwed Aeewdi Pm'ic Apncy dt fte Oeguw d Delonm,
manibra by tie Mite of N"d Rwch unde nVnc NO 1475.U1.

3IC- jITY CLAS8IPICAION OP Y1416 PAUg(Whe" DOS. BRIOeru

OFFICIAL DISTRIBUTION LIST

Director 2 copies
Defense Advanced Research Projects Agency
1400 Wilson Boulevard
Ar lington, Virginia 22209

Attention: Program Managment

Office of Naval Research 3 copies
800 North Quincy Street
Arlington, Virginia 22217
Attention: Marvin Denicoff, Code 437

Office of Naval Research 1 copy
Resident Representative
Massachusetts Institute of Technology
Building E19-628
Cambridge, Mass. 02139
Attention: A. Forrester

Director 6 copies
Naval Research Laboratory
Washington, D.C. 20375

Attention: Code 2627

Defense Technical Information Center 12 copies
Cameron Station
Arlington, Virginia 22314

Office of Naval Research 1 copy
Branch Office/Boston
Building 114, Section D
666 Summer Street
Boston, Mass. 02210

National Science Foundation 2 copies
Office of Computing Activities
1800 6 Street, N.V.
Vshington, D.C. 20550
Attention: Thomas Keenan. Program Director

A Principled Design

for an Integrated Computational Environment

Andrea A. diSessa Accession For
July 12,1982 NTTS 0?18j

DTIC T,,3

AbtJust' f

INipayzefis

Avaiirfjii±ty Codes
Avail, andi/or-

Dist Special

Abstract

Boxer is a computer language designed to be the base of an integrated computational

environment providing a broad array of functionality -- from text editing to programming -- for naive

and novice users. It stands in the line of Lisp inspired languages (Lisp, Logo, Scheme), but differs

from these in achieving much of its understandability from pervasive use of a spatial metaphor

reinforced through suitable graphics. This paper describes a set of learnability and understandability

issues first and then uses them to motivate design decisions made concerning Boxer and the

environment in which it is embedded.

KEYWORDS: spatial metaphor, user models, understandability, computer language,

text editor, data base language, integrated computational environment, novice

programming.

This work was supported by the Advanced Research Projects Agency of the Department of Defense,
monitored by the Office of Naval Research under contract N00014-75-C0661.

S

I

1. Introduction
It is certain that in the future most computer users will be people who are nor-computer

specialists, people for whom the computer must be a useful tool for their own interests without

requiring inordinate computational sophistication or effort. Secretaries, financial analysts, scientists

of all kinds, but also teachers, students and trainees, hobbyists and homemakers will be among these

users. We are convinced that most of these people will be best served by providing an integrated

environment which has broad functionality, not via a great number of special subsystems, but via

common facilities which allow specialization if necessary, but accomplish basic tasks such as the

following list with a uniform, easily understood computational scheme.

-Text editing, including structured filing and retrieving

-Using and modifying pre-written programs

-Writing programs (including text editing "macros")

- Searching and manipulating data bases

-Producing graphicswith a flexible, programmable graphics facility

Though we will not pursue the argument for integrated computational environments in detail here,

the dominant point is that even if naive and novice users need not deal with several of the above

functional categories, it is still clear they could often benefit from doing so. Given that, there is an

advantage to any system in which learning any one functionality automatically carries competence

into other areas. In our view it is so obvious that such synergistic effects can be accomplished, that

the only surprising thing is that there do not yet exist any examples of integrated computational

environments suitable for naive and novice users. Instead, research has aimed largely at separate

systems for separate functions, apparently mainly because of the association of these areas with

different pre-computer technologies and because groups have narrowly modeled their own interest

on what functionality has traditionally found a place in individual "job categories." We refer the

reader to the Smalltalk, Lisp machine, PIE and Interlisp projects [Tessler 81, Weinreb and Moon

82, Goldstein and Bobrow 80, Teitelman et al 75] for previous work on integrated environments, work

which, with the exception of Smalltalk, has had little concern for unsophisticated users.

What issues arise in the design of an integrated computational environment for naive and novice

users? One stands out above all others. That is the understandability and simplicity of such a system

as perceived by its user. While efficiency or power can serve as the primary measures for systems

2

intended for experts, learnability and understandability are paramount for the people we aim at. We

must therefore try to understand the mental models people form of complex systems such as a

computational environment in order to design an effective one.

Unfortunately, cognitive science and psychology have not yet provided the well-elaborated theory

and empirical studies of understandability one would like to have before beginning a design exercise.

Though there are beginnings [Gentner and Stevens 82, Rumelhart and Norman 81, Young 81], for the

most part we are at the stage of having to announce principles just before applying them, and in fact,

to some extent explaining those principles through their application. This paper must be understood

as an attempt to begin to explore the principles of engineering understandability as much as it is to lay

out a design for a particular system.

It is not entirely a disadvantage to have to work in this way, with theory so close to application. It is

not often that one gets to design a system from scratch so as to be understandable according to some

set of principles. Other things we might try to make intelligible, physics and mathematics for example,

are much less malleable, less subject to invention and mutation than a computational system.

Newton's Laws do not allow tinkering in the way one can tinker with the appearance and workings of

computational systems. So in this sense, engineering these systems can be a much more direct

* embodiment of the learnability principles we propose, and offer more direct and rich feedback on the

principles themselves. The possibility of freely designing computational systems may well force and

motivate theories of understandability the same way the technology for fabricating steam engines

prompted the development of thermodynamics.

The first part of this paper sets out understandability principles for integrated computational

environments, largely by identifying paradigmatic classes of models users make of complex systems,

each with its own strengths and weaknesses. One of the main results of this will be that the central

notion of simplicity will take on a much more textured and complex character than might be the case

with less developed notions of what it is to understand. Fortunately, this complexity has returns in

highlighting the tr&,jeoffs one makes in designing a system to be understandable in one way or

another, tradeoffs which must be negotiated to effect a useful design. It also suggests the possibility

(even necessity) of using different models for different purposes, or for a gradual shift in kind of model

employed as a user becomes more experienced.

The second half of the paper applies these principles to the design of a computer language, Boxer,

being developed by the Educational Computing Group in MIT's Laboratory for Computer Science as

3

the basis for an integrated computational environment. Boxer has been partially implemented, but to

simplify exposition and more clearly highlight the modeling issues, what is described here is neither

the same as implemented, nor precisely what we intend to implement. Readers interested in what has

been implemented are referred to [Neves 821.

The Boxer language stands in the line of Lisp inspired languages (Lisp, Logo, Scheme) with some

crucial distinctions. In particular, Boxer makes the user interface much more integral to the meaning

of the system. This allows the user's stance toward the system to be one of "naive realism,' what you

see is what you have, and thus enhances communication of the model of the system. Boxer also

makes use of a pervasive spatial metaphor in which language structures and relations are expressed

by the spatial relations one sees on the screen. The intent is to tap well-developed spatial schemata

that humans already possess in order to facilitate modeling the computational environment. Rather

than serve as a specification of the language, the present paper is intended to show by example how

understandability considerations can play a significant role in the design process.

5

2. Principles of Design

J1 2.1 Structure and Function

The distinction between structure and function, long considered fundamental to the process of

design in any form, is particularly vital to the design of an integrated computational environment. The

distinction focuses on either characteristics of an object or action which are defining and

independent of specific use (structure) or on characteristics which have to do with specific use,

consequences or intent (function). The point is to separate descriptions according to whether the

implied descriptive frame universally applies (structure) or not (function).

One can contrast the structural aspects of a variable in a computer language which are given

primarily by setting and accessing protocols, with a variable's functions which might be described as

"a flag" or more generally, as "a communications device." Some other functional descriptions of a

variable which may or may not be applied according to context are "counter," "data" or "input." In

the last case, input, there is only partial structural overlap with a generic variable; the function "input"

requires some additional structure, namely local scoping and flow-of-control organization to allow the

procedure to have its input bound when it executes. Yet, by and large, one treats inputs as variables.

The issue of partial structural overlap, which variables and inputs evidence, will be a recurring topic.

The structure/function distinction is particularly important to the design of a computational

environment because not only the designer, but also the user must come to grips with the issues

involved. Much more than the user of a designed artifact such as a building, the user of a

computational system must understand how the system operates and how it achieves its goals in

order to make it do what he intends. In terms of function and structure one can understand the

obvious failure of the most naive attempts at integration -- namely, simply arranging for all separately

designed function areas to be accessible from each other. (We are ignoring another potential

difficulty of this tactic, that such mutual access must be trivial for the user.) The problem is that

structural elements in each area will differ because they are tuned to the functions of that particular

area, or worse, the structural elements may differ for no principled reason at all. Thus the syntax for

typing a command may be different "in the monitor" as compared to "in the programming language."

Commands in a text editor may have no written representation at all for no particular reason except

that data objects (text) dramatically dominate procedural objects in that function domain. As a result,

there is more to learn for the novice, and confusions are constantly caused by similar but not identical

structures. Just as much, one is deprived of the power of structures considered important in one area

6

but not salient enough in the functionality of another to warrant implementation: Should one be

deprived of the power to write a new program built out of a few primitives in the text editor simply

because it's not part of the usual functional specification of an editor? Is instant action on keystroke

command entirely useless for a programming environment?

We identify two principle design heuristics for integrating different function areas so as to avoid

the above difficulties. First, design the underlying, general structures of the computational

environment in such a way that specific function can be built out of them. In this way we imagine that

one would often use structures not specifically tuned to some function -- or if specific functionality is

important, one would build it. Single keystroke actions, for example, could be the result of a general

control construct. Thus editing commands ordinarily executed with a keystroke would also have

written out names, follow the syntax of the programming language and would be editable and

augmentable with any user-defined procedure. This example follows a pattern, "shallow structuring,"

that we think must become typical: Any functionality that is important for the user to construct or

modify can only be a rather simple combination of basic structures. For naive and novice

programmers, that would be the limit of understandability and personalization. If the gap between

basic structures and usable functionality is large, it might as well be infinite.

The second design heuristic is to exploit the possibility of achieving some intended goal

functionality not by having any dedicated structure or even a simple combination of structures, but by

letting several aspects of the environment take over some appropriate part of the goal. A simple
"motherhood' example is allowing the use of arbitrary, mnemonic names to aid documentation. A

more complex example is to help solve parsing problems not only with a simple syntax, but through

interactive parsing and prompting when an expression is typed in.

These two design principles aim at structural parsimony, "collapsing" structures to a small,

common core. They are directed against.what we call the hacker bug of implementing a structure for

each idertified functionality. By nature, integrated computational environments are systems in which

we cannot afford a one-to-one connection between structures and functions. Needless to say, this

applies within as well as across large-scale functional domains. Reducing the number of structures

within programming in itself is an important goal. Shallow structuring is the first of an important series

of refinements and constraints on the urge to structural simplicity.

"IA

7

2.2 Mental Models and Surrogates
One cannot approach the design of an understandable computational environment without saying

something about understanding. To this point we have relied on intuitive ass~ssments of simplicity

such as "a system composed of a large number of similar but subtly different structures is hard to

learn and prompts mistakes and confusions." While we believe these assessments, it is important to

begin to take steps beyond them. We must look more carefully at a hypothetical user's "mental

models" of a system, that is, how a user understands in order to control the behavior of a system.

The words "mental model" often conjure up the image of a sort of replacement machine located in

the mind on which one can run experiments and envision results without touching the actual

machine. Such coherent, runnable conceptions have been called surrogate models by Young

[Young 821.1 For example, one -typically models a "push-down list" as a physical stack on which

objects may be piled and removed. A push-down list, of course, does not behave identically to a pile

of objects (e.g. "overflow" versus gravitational instability), but the image of a pile does allow one to

simulate its important behavior.

The notion of a surrogate model is as much functional as structural. It is the intended use of the

model as much as any possible generic classification on the basis of mental operations which defines

it. A surrogate model is intended to capture the causal mechanism in such a way as to offer

explanation and correct predictions in uniform terms. As such, it is the ultimate arbiter (for the user)

for tracing entailments forward or backward in time. (The behavior of the machine itself could serve

this role, except that that behavior in itself provides no parsimony of understanding.) Surrogate

models are almost always explicit and taught, and one would typically see them invoked by a tutor

when a novice's expectations have gone awry. Two of the most elaborate surrogate models that are

attempts to encompass a large part of the operation of a computer language are the actor model of

Smalltalk and the elaborated versions of Papert's little man model of Logo done by the Edinburgh

Logo Project [du Boulay et a/ 81]. One possible surrogate model of a language would be a

specification of its implementation, though this is hopelessly inadequate pedagogically for technically

unsophisticated users..

Though it is not inherent in the concept, surrogate models are prone to certain problems as a way

of giving users effective control of a system.

1Our use of the term differs subtly from Young's, though not enough to warrant another label. Some of our discussion below
follows this same reference as well.

8

Learnability: Since they aim at being uniform views of rather complex systems, they
themselves tend to be complex. When pushed to cover all behaviors of a system, they
often lose their air of coherence with ad hoc elements for dealing with loose ends. More
particularly, because of their compact, tightly interconnected nature, surrogate models
require a good deal of learning before they can be applied to even simple, everyday
events. Incremental learnability is sacrificed for the sake of uniformity and completeness.

Styles of use: Surrogate models, though very good for debugging (that is in cases when
one has a given input to the system and needs to afford the time to, step-by-step, trace
down an unexpected behavior), are typically rather slow and time consuming to "run."
Routine, relatively fluid interaction with the system cannot be expected to occur as a
direct result of acquiring a surrogate model. At the very least. degrees of automation,
"compiling" frequently used operations, etc., occur. Moreover, surrogate models can be
unfortunately far from the task of inventing a way to effect some intended result. For
example, in planning situations the specification of the goal out of which the plan must
arise is typically roughly outlined and almost always functional, referring to a context
frame different from the surrogate. In contrast, the perspective of a surrogate model with

its aim of comprehensive prediction is clearly structural. 2 Brown and de Kleer [de Kleer
4 and Brown 811 argue convincingly that a model aimed at unfailing and comprehensive

explanation must be structural and not functional. Here, some examples of the gap
between functional and structural specification must suffice.

Suppose one wants to communicate some information from one procedure to another. One thinks

of using a variable not because one knows how a variable works, but because one knows a variable

can and often is intended to have the effect of "information transmission." In PASCAL one often uses

the PRINTLN command because one wants the side effect of moving to the next line, not because one

wants to print a null line. Not surprisingly, novices must usuaily be taught this "hack"; it is a potential

function not easily seen in the meaning of the command. An example more germane to later

discussion is th? fact that either a variable or a function might perform precisely the same role in an

expression, to provide a needed value. The considerations which dictate whether one chooses to

4 implement that role with one or the other structure may be totally invisible to the semantics the

programmer attributes to the symbol used.3

More qenerally, arning a command entails learning important side effects of that command which

can be exploited to attain particular ends as well as learning a context-free specification of the

2The relation t etween structural descriptions and surrogate models is interesting. It is probably true that "structural" is only
'.vll-defined if an explicit surrogate, or more generally, a "welt developed theory" is referenced.

I3 3 For this reascn it seems troublesome, at the least an unnecessary burden on the progiammer. if the syntax of the language
requires distiricli .,e visual form for structures that can have the same function. We generalize this argument later to argue for
syntay ir, which s.ructure is minimally intrusive.

9

"meaning" of the command. Teleology, plan fragments (such as the counter paradigm for the use of

a variable) -- not to mention hacks -- are not germane to a surrogate model, but are clearly part of

understanding a system.

We have already mentioned that surrogate models are often complex, especially for powerful,

high-level languages. A design heuristic, probably originated in response to this protlem, is to

construct a language deliberately to have a simple surrogate model by selecting the out ine of the

model and building structure and syntax around it in such a way as not to lose any "necessary"

functionalities. Smalltalk has followed this line, beginning with the root actor and messa(e passing

model. While we do not mean to broadly criticize this heuristic, (we shall use it, albeit carefully) the

above considerations suggest some dangers in this route, even if it achieves the basic goal of a

simple surrogate. Specifically, the construction of a broad class of functionalities out of a tiny set of

structural elements is almost bound to involve great cleverness. While systems designers may be very

fond of these hacks, the novice user is generally less appreciative. One must expect many ,)f these to

require specific tutoring, in which case the advantage of a small number of universal structLres over a

larger set more specifically tuned to important functionalities is not clear. indeed, depend ng on the

naturalness of the hacks (more on naturalness below), the simpler surrogate may be all a distinct

disadvantage.

In summary, we add a new heuristic to our arsenal: In addition to the obviously problematic hacker

bug of providing a structure for every function, considerations of understandability warn against the

opposite extreme, the formalist bug of providing a sparse set of primitives out of which t) build all

functions. If typical learning of the language will require a number of special functional tricks, the

advantage of a very sparse structural vocabulary with correspondingly simple surrogate model is

much reduced. An alternative strategy is to focus on some relatively small set of special cases

corresponding to basic functionalities and to tune the language's structures to those cases. Indeed,

we think learning prototypical cases in functional terms will almost always precede under,,.tanding a

surrogate in any case. Though we must still expect coherence of the special cases to be important

(and will explain how we expect our proposals to achieve coherence), we will follow this line to avoid

the formalist bug.

2.3 Functional Models
Some readers may, understandably, be uneasy at our criticism of achieving integratirn with a

uniform, simple surrogate model. What can we offer in replacement? To begin, we suggesied above

10

the technique of linking structures more closely with functions which are already understood or are

easy to learn. Following earlier remarks, in making such functional models we must (1) take care not

(to have too large a set of these nor (2) tune them tightly to specific "traditional" functional areas, nor

(3) foreclose the possibility of an effective surrogate in the cases that is likely to be needeu, like

debugging. The pattern of learning, then, would be that a few, important and generally useful aspects

of the language, say, particular constructs, would be learned as solutions to specific problems.

These points deserve elaboration. Young [Young 81] details what he describes as a task-action

mapping model of algebraic calculators as follows. By "typing in a problem," say 3 + 5, in a way which

maps trivially to doing the same thing with paper and pencil, one has set up a context where what

q should happen is obvious: One wants the answer. Pressing = does precisely what one wants in that

context, namely, gives "the answer." "Doing what one wants" in a prototypical situation is quite a

sufficient model of the system for many purposes.

Models acquired in this way obviously have some defects. Unlike surrogate models, one cannot

e> pe,: the gE neral behavior of the system to be evident in a specific context. For example, the state of

the system if one were to type 1 + + is not constrained by the prototype "problem insertion" model of

+ . It one expected novices to need to interpret situations equivalent to 1 + + (such as understanding

some prewriten code) or if the functionality achieved through 1 + + were important and not

conveniently achieved through other means, one should certainly beware relying on this functional

method of giving users a model of the keystroke +. Functional models provide restricted

understanding. The descriptive frame will typically be weak with respect to structural aspects of the

situation, e.g. the internal state of the calculator after pressing 1 +. This knowledge is important for

debugging a0id .imilar tasks, for example, to know what to do to correct a mistaken + when - was

intended. It is also important in that if a structure is to serve several functions, a single functional

projection may not be sufficient to allow the user to understand or generate the other functional

descriptions. Indeed, 'because of the semantic constraints within the functional descriptive frame,

c-rta~n comloination% of structures (1 + + is an example) will lie entirely outside the capabilities of the

frame to describe.

In a genetal purpose computational environment, one cannot expect to model a very large part of

t3 \,'Stetn with functional models based purely on common knowledge or previously understood

r-1ia. 4 But the same strategy can be applied after some initial experience V) bootstrap on learned

11Th, w '.,rox a' rnith et al 821] uses ordinary office procedure itself as a model for undei standing that system. This is an
imp,,sive ,'xoirision of modeling on the basis of previously understood media over modeling a calculator on palror and pencil
calculaion But it falls short of being a general pui pose computational environment.

• I w ~ m w ~ ~ m m m~ a ma m lmm mmm nmm mm m- - •

V 11

capabilities. We expect beginners to start by learning relatively trivial actions which will allcw them to

inspect, generate and use simple programs. Many of the structures of the languagie will be

understandable as solutions to specific problems such as creating and using in new conte> ts objects

whose form and function are already understood.

Functional models provide only a view of part of the system, and that only with respect to a non-

universal frame of analysis. Obviously, one needs a repertoire of them; the notion of a single model is

tenable structurally (surrogate) but not functionally. With respect to the strengths of a surr)gate, this

fragmenting of understanding shows weaknesses. On the other hand, from the point)f view of

incremental learnability, teleology and other important aspects of understanding, functior al models

can be superior precisely because of their contextual specificity.

2.4 Distributed Models
Knowing a friend is not much like having a surrogate or even a collection of functional models. A

moment's thought about the learning process reveals why. Learning experiences are more typically

discovering actions and reactions of the friend in many different contexts, very few of which have

simple, evident or generalizable functional frames. In this section we describe a kind cf episodic

learning similar to that described for a calculator above, but within which the acquired model is due to

a spectrum of partial understandings -- not to a single functional frame. We think such learning and

the models derived from it are vital to understanding complex systems, even if they appea at first to

be even less tractable as a basis for design.

This example comes from a rather early stage in learning Logo. Beginners almost always start by

driving the Logo turtle (a graphics cursor) around with commands like FORWARD 100 (meaning move

forward 100 steps). While structurally one could describe this as a function (in the Lisp or

mathematical sense)5 with its input, it seems certain elementary school students must be interpreting

FORWARD 100 essentially as an abbreviation for an English sentence like "go forward 100 units."

The need for input, therefore, is semantic and situation specific, not structural.

When students are taught to define their own procedures, the metaphor of teaching the computer

how to do a new thing is invoked. One types TO SQUARE :SIDELENGTH followed by the list of

commands defining square, as in the following recursive example.

5The ambiguity of language between function in this sense and function, the partner to structure, is troublesome, but
unavoidable.

12

TO SQUARE :SIDELENGTH
FORWARD :SIDELENGTH
RIGHT 90

C(SQUARE :SIDELENGTH
END

In structural terms, TO SQUARE :SIDELENGTH is the syntax for defining a function, but it is easy

to see the syntax is intended to continue the interpretation of a command as a verb. The English

infinite form is frequently used definitionally, a function that the Logo procedure definition syntax

aims at inheriting. Furthermore, input specification follows the same form as the FORWARD 100

sentence, which is also acceptable English, e.g. "to go far." Abstractly, one sees a problem (teaching

q a new verb) and a solution (TO SQUARE ...), all of which relies heavily on a knowledge frame, English,

that is rather systematically used to help Logo beginners.6

But not all aspects of the syntax for definition are meaningful within the linguistic perspective or

4 within the functional frame of "teaching a new word." In particular, the use of : deserves attention. In

Logo the : (pionounced "dots") denote the value of a variable and is included in the definition syntax

to parallel and reinforce the pattern of invocation of procedures with variables as inputs, e.g.

FORWARD :SIDELENGTH, or more particularly, to parallel recursive call format, e.g. SQUARE

:SIDELENGTH in the finai line of the above procedure. These consonances are subtle, but

worthwhile, aid do not interfere with the linguistic frame.

It is important to note that the : marker as part of definition syntax has support other than from

visually matching the pattern of typical invocation; namely, it has a simple rationalization -- to

distinguish variable inputs from the procedure name, and to distinguish them in the form one most

frequently uses a variable, getting its value. Thus the whole syntax package is more easily adopted

and used for several distinct reasons having to do with different channels of coherence with the rest

of the system, channels such as a broad interpretive frame like "English," common-sense reasoning

(in this case, rationalization, ": is used to distinguish input variables from the name of the

GThe root me ,ning of Logo is Greek "word;" this use of natural language in making Logo learnable was quite deliberate on
the designers' part. Incidently, assimilating procedure definition to the natural language structure takes advantage of the fact
that, in English, ihe inmperative form (SQUARE) and the infinitive form (TO SQUARE) use the same word, as well as of the fact
ftht it is not outlandish in English to use a noun like "square" as a verb. Th3t this is not the case in many other languages has
proved problematical in devising effective translations of Logo.

13

procedure"), or even visual pattern matching.7

The learnability of the procedure definition process in Logo is due to its naturalness as a solution
to a particular problem when interpreted in a number of frames, each of which partially e) plains the

solution. We refer to models accumulated from multiple, partial explanations as distributed models. 8

It is easy to emphasize how far these depart from what one would expect if a simple surrogate

accounted for all of learnability, if coherence were measured only in structural terms. Logo is a

descendant of Lisp, and as a consequence, function application is the standard control organization

for procedures with inputs. Assimilation to that standard would require TO to be a function and

SQUARE and SIDELENGrH to be inputs. Thus one should write something like TO "SQUARE

"SIDELENGTH followed by the body of the procedure as a list of lists (the lines of the procedure

definiii-..' 'Iui only is there loss of template matching to a typical use of the defined object, but there

is no problem-specific rationalization for the syntactic markers. The different functions o: SQUARE

and SIDELENGTH are not marked, and TO is separated by syntactic marks from its close "English"

partner, SQUARE. Reginners would need to memorize the syntax with essentially no semantic or

experiential support. Of course, for the computer experienced, the syntax would have a gr.3at deal of

meaning having to do mainly with the advantages of uniform, context independent struclures. But

that doesn't help the naive and novice user.

There are limits to the usefulness of such situation-specific distributed models. Orocedure

definition is special in several respects. The problem context is easily understood in naive terms. As

important, the problem solution is frequently enough used that the model will not be dngerously

undermined by other experiences such as the structure of ordinary function application which implies

that PRINT SIN 5 does not print "SIN 5" and that PRINT HELLO gives an error if HELLO is not a

defined procedure. Only on such occasions (well-defined context, rich and frequent support for use

of the context dependent "solution") can one expect specific semantics to reliably dominate uniform

syntax through the entire course of coming to understand a system.

It goes without saying that one must consider long term effects of particular functional and

7Novices will often respond directly to queries about the definition syntax with such rationalizations: "SIDEI.ENGTH is a
variable," or "It's just like when you write SQUARE :SIDELENGTH," (recursive call). Implementations of Logo which changed
the syntax to TO SQUARE SIDELENGTH have prompted complaints from novices whose rationalizations were violated and, it
seemed to us, prompted more mistakes from beginners.

8The notion of a distributed model is derived from ideas we have developed about understanding complex syslems in other
domains. See IdiSessa 82a, diSessa 82b).

14

distributed models. Some will remain and be integrated as "special case" models. Visual pattern

matching is an example.. Some will fade away naturally and be replaced where appropriate by

(surrogate models. No learner believes Logo is English for very long. But we are aware that globally

destructive misconceptions may be fostered as well as "profitable misconceptions."

The force of this example is due mainly to the fact that defining a procedure is an extremely early

activity in learning Logo. It is a great defect in past language design that even the grossest features of

learning sequence are ignored in considering "simplicity." In our proposal, coarse features of a

learning sequence will be at least implicit and sometimes explicit.

In summary, a structurally simple language (one with a simple surrogate model) is in principle ideal

for post hoc explanation, debugging and prediction, but can fail to be generally useful by not being

incrementally learnable and not sufficiently close to the fuictional terms in which problems to be

solved are phrased. Our discussion has not only mapped out these typical failure modes but also has

proposed building less coherent, but still effective models based on function or on compatibility with a

colkction of partially explanatory frames. A typical pattern is that the few initial structures which a

beginner encojunters h.tve the following properties: 1. They provide sufficiently broad functionality

through simple variation on the prototype to support many activities. 2. Those structures will need to

be understandable on the basis of naive functional and distributed models. 3. The initial models

should lead unproblematically, through teaching and experience, to the appreciation of a moderately

simple, relatively complete surrogate model.

Having sketched in general terms a set of issues we see as important to understandability, we turn

now to more detailed assessments based on particular knowledge, "model-building material," users

might have or lack. Given the general strategic decisions made for Boxer, we shall find that static

organization lends itself to a good deal of structural collapse to a small core. But for dynamic aspects

of computation, other strategies are necessary, including proliferating structures to allow tighter

functional match.

L -~ -"15

3. A Proposed Frame for Integration
The visual medium has, served a more and more important role at the interface between man and

machine, particularly since the advent of bitmap displays. But surprisingly little use has been made of

the medium to develop and support user models rather than simply to expand the bandwidth of the

interface in terms of amount of data available at any given time or to facilitate the operation of the

system for already comprehending users. In contrast to pop-up menus and iconic mnemonics, we

would like to use the video screen to attack the fundamental problem of understandability o' the basic

organization and operation of the computational environment.

The means we intend to use is a comprehensive spatial metaphor. In particular, spatial

organization will have strong semantic content: Elements of the environment will have or)e places,

and their visible spatial relationships will have structural meaning. Perhaps most important, all

computational objects will be created, represented and manipulated in essentially the same way, and

the user will be able to pretend that the objects are their visual representation. What we want the user

to see on the screen is, as close as we can arrange it, the computational system itself ratier than a

multiply-filtered or side-effect dominated view of it (e.g. a window occurs in some place and size

because that was what was available on the screen when the window was created). Ta ing naive

realism so seriously, in fact, separates this proposal most strongly from all previous computer

language designs. Even those designers who are willing tc divert resources like the disp'ay screen

from "tuned-to-a-t" functionality to understandability have almost universally opted for user

interfaces which act as buffers or facades to hide system complexities from the user rather than to

search for a simplicity which could be shown.9

There are two driving forces behind use of a spatial metaphor. The first is that humans have a

great deal of knowledge and a broad collection of skills for dealing with space. Humans happen to

live in a world which is profoundly geometric in the sense that objects and places are salient and

tightly interrelated. The dominant mode of interaction with the world is to move objects (including

oneself as an extremely important special case) around into different configurations rather than, for

example, to mutate the objects or even pass messages between abstract, placeless entities.10

Things might be different if our dominant sense were not vision, but instead, hearing, which is

9See, for example, [Innocent 82) or IGoldberg and Robson 79].
01 is not that we are not impressed with the power of actor based languages, but the amount of work the acior metaphor

does in promoting understandability, besides providing a uniform syntax, is problematic.

16

dominated by messages.

The second driving force behind use of a spatial metaphor is the character of spatial knowledge,

which we find extremely compatible with the structure of Lisp-like languages, of which Scheme ;3 the

closest to what we need. It appears to us that in many ways we are simply uniformizing, extending

and concretizing many fragments of a typical user's understanding of these languages. This should

essentially guarantee that what we make will be a usable, practical language.

3.1 Static Structures and Functions

3.1.1 The Box

Essentially all static objects and configurations will be derived from a single object called a box. A

box appears on the screen as a rectangular region with the interior containing the box's contents,

which is dominantly text. The root meaning of a box is a "thing" and its contents are its parts. The

choice of text as the main surface form stems from the Logo idea to explicitly import some natural

language familiarity into computation and from the fact that text manipulation is itself a goal of an

integrated environment. Boxer is "editor-top-level." One always talks to the system through the

editor. As details emerge, it will become apparent how text manipulation and program writing are

intended to b3 mutually supportive activities. Either can serve as a good introduction to the other.

Boxes may contain subboxes, either named or not. Boxes are logically as well as visually two-

dimensional arrays in the sense that they are a sequence of lines, each of which is a sequence of

words (Lisp atoms) or boxes. Names of boxes must also be words.

BOXI --
4 This is a box whose contents is the text

you are reading.
Here is an unnamed box:--------------------------

I This box is the I
J last item on its line. I

Here is a named subbox whose internal detail has
been suppressed: BOX2 -

I r 1I i o n x

Figu re 3-1 : A box with contained boxes.

17

The abstract structure of a box, a hierarchical two-dimensional array, is enough to build almost

everything needed in BOXER without violating shallow structuring. We intend one of a beginning

user's first activities to be wandering around in the system itself, inspecting it. This can be

accomplished simply by moving a cursor around (our prototype system, built on a Lisp machine

[Greenblatt et a! 80], uses a mouse) and the keystroke commands ENTER and EXIT. ENIER, when

the cursor has been placed in a subbox, visually causes that box to be the top level of display and

EXIT "pops" up to the next higher level. Creating, deleting and moving boxes are simple functions of

the editor.

3.1.2 Boxes as Procedures

Procedures appear as boxes. (See figure below.) Subprocedures may be written directly into

procedures as subboxes giving the functionality of vi4bl(block structuring. These subprocedures

may be named for mnemonic purposes, as can any box. This is especially useful when one wishes to

suppress detail for clarity. In many of the exawv.'s to frlIow we use turtle graphics and essentially

the syntax of Logo.1 In particular, Logo is line i'ented rather than Lisp's expression orientation.

Not only is this line orientation consistent wi"r, the basic box's visual organization, but it encourages a

kind of modularity that is important for non-professional programmers; the effect of anything typed in

a line is confined to that line.

SQUARE--------------------------------

REPEAT 4 SIDE------------------I
I FORWARD 100 I
I RIGHTo I

Fig u re 3- 2: A box represents a procedure.

To make all aspects of a procedure concrete and spatially accessible, in particular local data such

as inputs, we need an additional structuring of a box. In fact, having usable data local to a box but

other than its contents is so generally useful we declare that every box has a local library located in its

upper right hand corner. This contains definitions of any local symbols which may be used interior to

the box and in any box contained (recursively) in that box. Containment implies inheritance. The

details of scoping will be treated in section 3.2. The procedure below has an input, NUMBER, and

draws a polygon of NUMBER sides and sidelength LENGTH.

11We have not settled the issue of syntax but Logo is a close approximation to our current best guess.

18

POLY---
INPUT NUMBER LIBRARYI LENGTH ------- NUMBER ------

I IO~100 I I II I I

REPEAT NUMBER I
I FORWARD LENGTH I
I RIGHT 360/NUMBER I I

I--

Figure 3-3: The local library contains definitions generally useful in the box.

The value of inputs and local variables will be inspectable in the library during debugging. A value

written into the contents of an input will serve as a default value. It is important that since the local

state of a procedure represented in its library may contain procedures and data as well as inputs, one

may place such items at more appropriate levels of the hierarchy of a procedure-subprocedure

system than at the highest, "global" level. This makes systems of procedures easier to inspect and

understand than the unorganized piles of Lisp. Since subprocedures may appear in place, single-

purpose subprocedures need never appear in any library at all.

Though the local library is special in the sense that it is not part of the contents of the box in the

ordinary way (e.g. it is not executed as part of the procedure), it is structured, inspectable and

editable exactly as all other boxes are. Detail may be suppressed. One is free to arrange the contents

of a local library spatially so that the most important procedures occur near the top and so that related

procedures appear together. The library's semantic as container of generally useful information

about the box makes it a natural place for annotation, documentation and other help.

3.1.3 Boxes as Data Objects

The boxes NUMBER and LENGTH above function as variables, and generally boxes will serve to

define data as well as procedural objects. In contrast to traditional languages which have a number

of different structurs for handling compound data (strings, arrays, lists, records, etc.) box structure

is intended to be ,niversal. This structural universality, as with lists in Lisp, should be a source of

great power and simplicity. To achieve the full benefit, boxes must be first-class objects. Boxes

already have names, and we will deal with details of other aspects of first class status later.

Lisp's universal compound structure suffers some of the same problems as a simple surrogate --

iarnely, list structure is too far from important classes of functionality to be easily appropriated and

used. We think the two-dimensional, line-oriented form of a box is better adapted to a broad range of

19

functions than a simple ordered sequence. For example, a box can simply contain some text in the

usual sense. And we will not tamper with the box structure per se in tuning even more to specific data

functionalities. but instead we will add a number of different access routes to parts of the structure

which are aimed toward particularly important classes of functionality. We expect these to be learned

as solutions to particular problems as the user advances.

One of the most important of compound data functionalities is the ability to deal with named

subparts easily. Most Lisps have property lists that are often used for this purpose. Boxes have the

capability implicit in the fact that any box or subbox may be tagged with a name. All one needs is an

appropriate syntax for selection. We shall use an index notation here; V.X specifies the X supart of V,

and for assignment MAKE V.X 1 means set V.X to 1 in the same way any variable is ;et; MAKE

NUMBER 5 sets NUMBER's contents to 5. One can specify any number of levels, e.g. VECTJRS.V.X.

V ------------------------
I X -- --- Y --- -- z -- ---

I Iil 101 101 I
I I

Figu re 3-4: A vector with labeled subparts.

It is nearly as important to have "address" names for elements of compound data objects in cases

where individual names are inconvenient or require too much overhead. Correspondingly, we will

have an alternate vocabulary for specifying parts of a box based on location. It would be extremely

natural to use array indices into the two-dimensional structure (rows and columns) of a box. One

would also like to reference rows because of their important meaning (visually, in procedures, etc.)

and elements by their sequence number (reading, as text, left to right, top to bottom), e.g., ROW 1

ABOX or ITEM N BBOX.

3.1.4 Boxes as Envi'ronments

Boxes and a local library provide a functionality that has been much neglected in computer

languages, that of an environment. One can arrange a place in which a particular set of procedures

and data are available for a user to employ in an unconstrained way. The construction of

environments has proved to be an invaluable method for teachers to provide students with domains to

explore [Abelson and diSessa 81] or with generally useful "tool boxes." A box used as an

environment has some advantages over programs or even workspaces whicfi might otherVise serve

the same purposes. In contrast to a program with specific 1.0., box-environments save the

20

programmer from creating (and the user from needing to learn) a special interface. Environments

allow flexibility in terms of simple programming on top of what's given, easily accepting a very general

class of user-initiated modifications. Like a workspace, an environment simplifies the constructirn of

what might otherwise be a complex, monolithic program by allowing one to build and try out snralier

pieces. But an environment in Boxer is both more general (e.g. one can nest environments) and

better integrated (e.g. constructible and editable in the same way data and procedures are).

Considering that nested boxes offer a choice of where in the hierarchy to place needed objects,

Boxer environments are also more controllable and self-annotating. Lisp and Logo workspaces often

get so cluttered with "helping" procedures that the ones intended to be used at top-level are not at all

apparent.

"Time modularity," how one creates natural and stable boundaries in time between sets of

activities, is one functionality of the file-workspace organization that is not taken over by box

structure. The simplest Boxer structure to handle this is the ability to save and restore named state

ve-sics of any box. Note this gives much finer control over time modularity than workspace-files.

One can save versions of a procedure within an environment. With this simple method, coordinated

changes in ai environment must be handled at a level of the hierarchy which is sufficiently high to

contain all suzh changes.

At still larger scales than environments, boxes can serve to organize an entire personal

computational environment. One needs nothing more for a hierarchical file system. At.the most

global level, a box we might label UNIVERSE. the local library can contain documentation on all the

system prirnit ves. The contents of UNIVERSE would contain the top level view of the organization the

user chooses for his entire environment. This use of box structure duplicates most of tiho functionality

of one of the most successful aspect of the Smalltalk programming environment, the Browse:,

allowing leisurely perusal of the entire system.

Boxer's acdvantane in this is that it is all Browser! There is no need for any dedicated structures

with extra wcrk in learning to construct or modify the "shape" of the system. 12 The long time-scale,
rjlnEil peisonal organizational capabilities of Boxer are one of its most important advances over

previous proc ramming languages.

12 Te ri ows(r in Smilltalk is not part of the programming language, but part of the user interface. Ihis means, among

,thlr things. that much Browser structure is special to the Browser, not easily modifiable by users, and the parts that are
rnr hle musl be ,tlecled through specially learned procedures. It is also true that part of the system organization seen in
the fbro'w ,,r exists only for the Browser ane does not reflect system semantics in a fundamental way.

21

UNIVERSE ---

PAPERS ------------- SCHOOLWORK----------------
I 11I111MATH ------

PHYSICS ----

GAMES MAIL-------

Figure 3-5: Box structure can organize the whole computational

environment.

Some of the flexibility and ease of learning in Boxer comes from the fact that the process of

constructing a box is separated from the static representation of the box once made. This allows

users to choose method of construction and modification. One may type a procedure or assemble it

out of previously written text (for example, out of commands typed in an environment in the course of

experimentation), then move it to the local library; one may type a procedure directly into the local

library; or one can have some procedure (TO) do that work by side effect. Identifying the process of

constructing a procedure with its static representation, as with Logo's TO or Lisp's defun, is a

relatively clean hack, but one we consider a remnant of teletype interaction, where object creation by

side effect is a necessity. Especially for environments and large data objects, the concrete access

provided by our spatial/naive realist approach is natural and functionally superior to creation by side

effect and mutation by magic.

3.1.5 Kinds of Boxes

We have been discussing a very wide class of functionalities deriving from a single structure.

Though we would like this to be precisely true, our implementation and other considerations have

convinced us that boxes need to be labeled as to type, and have slightly different behavior

accordingly. Most of this has to do with control (next section). Briefly, the kinds of boxes will be

something like the following list: We will have data (variable) and dolt (procedure) boxes.

Environments should be labeled to help an exploring user locate the levels of the system intended for

use in that way and to keep one from the meaningless act of executing an environment. For several

reasons, boxes which contain only text deserve a label and special behavior. One would almost

22

certainly want slightly different behavior for the text editing facilities (such as sentence and paragraph

orientation and automatic justification). Special status for text allows one to use it in the midst of a

(procedure as annotation without danger of it being executed. Finally, we will want graphics boxes

which are saved as bitmap images.

It should be clear how much of the structural backbone of a computational environment can be

supplied in concrete form by a two-dimensional hierarchical array -- the box. We are convinced that

the strong identification of "things" with "places," and "organization" with "spatial relationship" (in

particular, containment implies inheritance) provides a firm foundation for easy incremental

learnability of the system through inspection and through a uniform method of interpreting, modifying

and expanding what one sees. Nonetheless, these identifications are a very strong constraint on

system organization and possible interpretations of "running a program" (to be discussed below).

There are very cogent arguments that simple hierarchies are not optimal in, for example, scoping

rules, though the sense of optimal is usually phrased in terms of reliability and flexibility -- not in terms

of cur chief concern, understandability. A context in which we do accept the force of these

arguments is the "user interface." In Boxer what one sees on the screen, how one interprets it and

how one manipulates it isdominated, if not entirely appropriated by a uniform semantic and method

of manipulation. One sees the system. On the other hand what one wants to see on the screen at any

given time might be things which are related in some way other than with respect to their system

organization. While running a program in some environment, one might wish to view the changing

contents of some distant data box. Or one might want to be looking at some part of the system while

constructing another part, say constructing a program in analogy with another from a different

context. Window systems were invented partially to serve this kind of function.

To meet this need and a few others we have been experimenting with a single structure which

4 provides some of this functionality but which we consider minimally subversive of the system

semantic. It is calle, a port and has most of the properties of a box. It appears as a rectangular

region. though spe-;ally marked, can be named and is constructed and erased in the same way that a

box is. But its meLning is a passway to another part of the system. What one sees in a port is a part of

the system located in another place. Thus one can inspect and even change remote objects. In

general. one can pretend that another part of the system is in the place of viewing without changing

the' real" organization of the system. The primary difference between a port and a window is that the

p)rt itself is spatially located in the system hierarchy, not attached to the screen. A port appearing in

a data structure indicates the object contained is shared in basically the Lisp sense. The difference

4A

23

between Boxer sharing and Lisp sharing is that any object really belongs to (is contained in) a unique

other object and can only be "used" in other places In the section below we will give some examples

of functionalities other than "screen organization" that can be appropriated by the port.

In terms of understandability, we believe Boxer fares well as far as it's static organization is

concerned. There is a small structural core of spatially organized textual objects, and the main

associated functionalities do not appear to make radical changes, either semantically or visually, to

that core. Even the variations needed to provide specific functionality are accomplished b) means of

a weak sort of typing, based on what we expect users to find natural functional categories,

procedures (things which do something), data, text and graphics. There are other ways of achieving

functional variation of the core structures, for example, by adding syntax to specify use instead of

types; or using modular, special-duty parts of a box (such as "doit" or "data" parts), but types appear

simplest. To be sure, the ties between initially perceived functionality and these typ.s will be

loosened as the behaviors of these different boxes come to be better understood in context-invariant

terms, but this is precisely the right thing to hope for when functional models are used. The real test,

naturally, is empirical in terms of effective, long-term use of the system. We expect the results will

bear not only on the judgments we have made about the feasibility of expecting users to a.3propriate

the models outlined, but also they should bear non-trivially on the sketch of mental model building for

systems of this sort which has served as a design heuristic.

3.2 Dynamic Structures and Functions
Now we turn to dynamic structure and function, the issue of control and change in the system.

When one thinks of control in a computer language, typically what comes to mind is itecation and

conditional structures like REPEAT <number of times> <things to repeat>, and IF <conditi-n> THEN

<action>. These can be dismissed here easily. While we are aware of some difficulties in modeling

these, we do not think the problems are as serious as many others. And it is also true that we do not

have much to add to what has already been said about them. So Boxer will simply appropriate some

set of these which do not differ greatly from those available in Logo or even Pascal. Instead, we think

the deep issues have to do with what a procedure does when executed, what it means to axcess and

set a variable.

24

3.2.1 Reference

A useful non-computer context for introducing these issues is reference in natural language.13

Humans have an extremely elaborate set of mechanisms for determining and verifying the reference

of any utterance. The striking fact about this is that these mechanisms are almost totally invisible. in

retelling a simple story "the man who ..." is apt to be replace by "Joe" or whoever is understood on

the basis of contextual information to be the man referred to. If there was an ambiguity of reference,

the usual case is that, unless it was noticed at the time, that ambiguity will be unretrievable -- how one

established 'oe to be the referent is not long stored, if it is ever recognized. In a similar way,

elementary school students will respond to the joke: Antidisestablishmentarianism. Bet you can't

spell that. "T ' "H" "A" "T"! But they are very unlikely to be able to describe or productively use the

shift in reference of "that." The cues which prompt type/token or use/mention distinctions in classes

of reference are not well understood by linguists, let alone by "common folk." Even the fact of such

distinctions is not available to most people. In short, establishing reference, though a complex

process, is perceived as though it involved totally transparent pointers to referents.

the problem for computer languages is clear. Efficient reference mechanisms (to date) have been

extremely simple, some version of lookup based on large scale syntactic rules and/or type indexing.

Lisp as an e':freme case does a lookup on the basis of a universal syntactic form. Such schemes

have underst indability problems: They are not sensitive to the contexts that users will spontaneously

apply, nor will a naive user be able to comprehend the clevernesses needed to make the context-free

mechanisms find the appropriate reference.

Logo took an apparently schizophrenic approach to the problem. On the one hand, it granted

special statu, t. functions like ERASE (clear a procedure from workspace), PRINTOUT and even TO

so that one writes TO SQUARE rather than TO "SQUARE, to simplify this semantically clear

reference. 14 On the other hand Logo chose to leave the distinction between function and variable

iookup to thIE user. specifying variable lookup with : as in :X. Apparently the rationale was that the

tunc-tion,i classes jariable" and "procedure" are sufficiently distinct on naive criteria to "allow"

H .,enc i-, tie context cf computer languages is usually restricted to discussions about distinctions like call by name
v..u ;.jII Li v iluc. Readers assuming that context should be aware that the discussion here involves a much broader
Ci7 i i; ' of 1hu issues iniolved.

A r.iilon3d earlier. literal reference mode. specified by quote, would be necessary it TO followed usual function
. iii ., et ,,, r Wr l , input. Also, we are concentrating on inputs here because tihe ii perative (English) interpretation of

N oe ,,On n ime, t, ji t wccessful at providing a model for the reference (carrying out an action) of the first element of most
I jgn commnd itrings

Im n u , , m d un a= lanmm m m ll llglg - mg ..

25

(read "require") users to be responsible for the distinction. In fact, experience has shown this to be

relatively unproblematic. Kinds-of-things distinctions of this sort seem to be rather natural.'

What has proved more problematic is that : in Logo truly denotes a structural reference

mechanism and not a kind-of-thing as the functional distinction procedure/variable might imply. The

problem is that assigning a variable a value involves two kinds of reference, a "named object" type

(like ERASE <named object>) to specify which object is being set, and a "value" type to specify the

new value. To simulate these out of its structures (which are largely inherited from Lisp and tuned to

function application) Logo writes MAKE "X :Y (X gets Y's value), even though X and 'N are both

variables. 16 Experience suggests that learnability is problematic; the variable assignmem. syntax is

not as susceptible to episodic learning based on germane rationalizations as one might have hoped.

Thus it appears to be a burden without significant advantage for beginning users who cannot be

expected to see the structural significance of the markers and must rationalize on purely functional

grounds ": denotes a variable, except in MAKE," the latter part of which is without any

generalizable import. 17

In fairness, there are things to be said for the syntax: (1) MAKE is then a function in the ordinary

sense, which uses value reference for each of its inputs. (2) Because of this, variations o' standard

usage are relatively easy to achieve as in MAKE PROCEDURE.WHICH.COMPUTES.A.NAME or MAKE

:VARIABLE.SET.TO.A.NAME. (3) A judgment was made that it is not only possible to teach the

name/thing distinction, but that this could be a valuable gain from learning the language. We have

already argued that (1) is a consideration for advanced users, not beginners, and (2) is as well:

Computed names are almost never useful for novices. Not only that, but novices find them strange

and remarkable when they do encounter them. Even if the flexibility is there, that does not mean it will

be seen or spontaneously used (formalist bug). One can have more sympathy for (3) except that it

makes little sense to complicate very early use of a language with issues that will eventually arise in

other contexts anywaj'. In general our heuristic with Boxer is to simplify the lives of early users, even

1 5 As an example, some beginners seeing inputs in procedure definitions for the first time evidently rationalize the : to mean
input in a kind-of-thing sense. Then they type SQUARE :100 following that assumption. Good rationalizations, like visual
pattern matching in procedure definition syntax/invocation, do not spread to inappropriate contexts like this.

16 This assignment syntax is a little like the e~' = -1 of Logo in that it contains nearly all the important things in the world

(namely, the three main reference types, function-procedure, literal and variable) to produce a simple effect, variable
assignment.

f 7 Another problematic rationalization is to think that the two character string "X is the name of the variable and :X is its
value. A more profitable rationalization is that : denote a "value of" operation, which would lead one to expect that ::X should
give the value of the variable-name accessed by :X. Some implementations of Logo have supported this.

26

it it means complicating slightly the lives of experts.

(f Finally, one could argue that a syntax which hides the difference between kinds of references is

bound to be confusing. But in the first place, note that if our earlier claim is true, that refc ,- ce

mechanisms are generally invisible, the user will experience both references in MAKE X Y as simple

references. Second, while the literal marker might be rationalized to represent named-object

reference, in fact, it represents only a mechanism of achieving that reference. (Although it is typical of

that kind of reference, quotes are used for other purposes as well.) As well, this is not a

rationalization likely to be made by beginners. More to the point, there is an important semantic

component of the reference associated with MAKE not captured by the literal reference; by MAKE "X

I<whatever>, one does not mean to replace the literal symbol X by some value. X must be understood

to be a variable which happens in this instance to be exhibiting the "setable" half of its "set and get"

protocol, independent of what mechanisms and syntax cause that to happen. If a user understands

that, there seems little point in a non-specific syntactic reminder, quote.18 Indeed, later we will

propose a semantic reminder in the form of a prompt, which has more attractive features.

Rather than the radical step of abandoning any form of uniform input protocol, we propose the

following two-fold strategy. (1) First we broaden the context sensitivities of the language. accepting

the assumption that most commands in the language carry an alihost unique semantically determined

"natural" reference mechanism which we simulate with appropriate but syntactically invisible

variations in lookup. (More detail on this assumption comes later.) So we would write MAKE X Y,

even though the structural reference mechanisms for the symbols X and Y are different. The second

arm of our strategy follows from the observation that this only postpones the issue, which will

certainly arise a3 naive users stray farther from patterned imitation of prototypes and wish to program

more complex operations such as setting variables with computed names, etc. (2) We would therefore

like to ease the transition to structural understanding of reference mechanisms. To do this we

propose (2a) to improve the understandability of the underlying reference mechanisms by developing

better surrogate m -Jels for them, and (2b) to improve debugging aids to the point where even if a

surrogate model Lils (most likely by not being used!) the error is easy to locate. In particular, we wish

18 1n ihis lighl. consider the proposal made earlier, that V.X should denote the X subpart of V. This is intended to allow users
ttl',, ;f V< a a named object which exhibits variable behavior. Thus in most contexts V X is an appropriate replacement

;or t$ho conternts of V.X. and ;n the case of MAKE V.X <whatever> one gets the "setting" behavior of this kind of named object.
ii 3 us(! unders:ands what . means, it should be no concern of his that ordinary structural reference mechanisms must be
,ttgnented so that V X can be interpreted properly and not as a character string which appears literally as the label of some
box.

-

27

to implement a method of watching a program in action to spot the error.'9 Debugging, of course, is

important in its own right for a host of other reasons. But perhaps most important, the visual method

we've chosen to implement will aid the acquisition of the intended models as well as simply the

catching of bugs. We expect episodes of watching the behavior of the system to lead to a rich set of

ratirnalizations and other partial understandings important to incremental learnability. We elaborate

these points starting with 2a, underlying surrogate models. on which the others depend.

3.2.2 A Surrogate Model for Boxer

The key ideas in producing a surrogate fur Boxer are to start with reference mechanisms linked

with kinds of objects, and to produce meaningful and visualizable (hence also dipictable)

intermediate states in the execution process.20

We mentioned that the distinction between variable and procedure, obviously natural to computer

languages, is clear enough in naive terms to be adopted as a fundamental. Hence, Boxer has data

and procedure boxes. A data box's function is to contain data in literal form. As such, we have

collapsed the two structures of literal reference and variable into one. A data box appearing in place

(e.g., in a procedure) marks the contents as literally referenced.

<data>
PRINT

I HELLO I

Figure 3-6: A data box marks literal reference.

The surrogate model for evaluating an expression involving a data box referenced by name

involves the process of retrieving a copy of the data box from the most immediate superior box whose

local library contains a box by that name. Then, execution proceeds as if the data had been written in

place. Lookup and copy for a procedure is identical, but the execution stage is recursive, i.e., will in

general involve copying and executing elements of the contents of the procedure. In short, this "copy

and execute" model involves optional copy (in case of reference by name) followed by execution,

t 9 Ron Baeker [Baeker 751 and Henry Lieberman (personal communication) have implemented systems with this
functionality

20See fLieberman 821, which discusses the impoilance of representing intermediate states.

28

which is recursive in the case of a procedure, terminating at the action of language primitives.2 1

Perhaps the strongest argument for this surrogate model of the dynamics of Boxer is its

visualizability. Copying a procedure or data box in some location is concretely realizable it, 'he

overall Boxer spatial frame. We imagine a stepper as part of Boxer's debugging facilities in which one

sees this copying of procedures on the screen, building the dynamic stack, and sees the replacement

of a name reference to a variable by its value. It is important to realize that the hierarchical lookup

scheme adopted as standard for Boxer along with the copy and execute surrogate causes dynamic

scoping to be the rule for free variables, i.e., ones used in a procedure but not contained in that

procedure's local library (which is copied with the procedure).

Such a stepper would reinforce, if not teach, the underlying surrogate model. One would expect

watching simple programs executing to be a part of naive users' early introduction to the system. One

could pause to inspect the calling hierarchy and the state of local variables (including inputs) at any

stage. The Logo "little man model" becomes concrete. In addition to stepping, such inspection

would be extremely useful after an error occurs. We imagine that in addition to an error message, one

could enter (via a port down to the level of the error) and inspect the stack.22

ft is not ha -d to extend this surrogate to ports. For this we use the functional characterization of a

port as imitati.g the presence of a box which actually exists in some distant part of the system. Thus

control is passed to that distant place, in which execution proceeds in ah entirely normal manner,

except any result is passed back to the calling environment by virtue of being "visible in the port."

One can retrieve and set variables in non-local environments and use procedures which have need of

a different environment. In the example below, executing PORT1 will set the variable A in PLACE2

which contains the target of the port.

The semantics of copying a port is unproblematic; the behavior of a copy is the same as if one had

written the port directly in place. So one can even use ports by name. Dynamically as well as

21A difterence between a surrogate and "what really happens" is clear here, no respectable implementation would literally
Jo sujch copying It is only important that the user be able to pretend that that's what's happening.

Those ar. r ot new functionalities to programming systems. Smalltalk and various Lisp implementations allow one to
jnsp-cl the stack. However, the advance in Boxer is that the mode of inspection is identical lo the concrete mode even

.girners use to inspect any part of the system, and the meaning of what one sees is a direct embodiment of the fundamental
',n-mIc surrogate cf the system.

'IYe now c(nsidtf it more likely that a port should be only a flavoring of reference type which indicates remote
eroi onment, not a reference type in itself. Thus ports will have to be marked explicitly dataport or doitport.

29

PLACE ----------------------- -

I <port> I
I PORT ------------
I I MAKE A I I

-- ------------- I

PLACE2----------------------------
I TARGETOFPORTI ------------- I
I I MAKE A 5 1j
I I

Figu re 3-7: Ports provide access to other environments for dynamic
purposes such as setting a variable. Here the expression MAKE A 5

resides in PLACE2, but is visible (and could be executed from)
PLACE1.

statically, ports give a mechanism for breaking the strict hierarchy of box structure, and we consider it

a minimal and natural extension.

It is important to note that, though their dynamic surrogate expressed in words is not complicated,

ports are more difficult fo watch than normally copied and executed objects.24 This is the main reason

we consider ports to be advanced elements in Boxer.

3.2.3 Inputs

We return to the issue of. varied and invisible reference mechanisms for inputs.. (Recall,

procedures and variables when referenced by name are not syntactically distinguished.) The idea is

to let the procedure establish context, how the text which constitutes an input is to be treated. We

propose three flavors of input which parallel each of the three ways (data, procedure and port)

execution treats the contents of a box. The procedure flavor evaluates the input text according to the

standard Boxer rules and installs the result in a data box of the appropriate name which is located in

the inputting procedure's local library. This matches closely the universal Lisp and Logo input

structure. The second kind of input treats the input text as data and transfers it unevaluated into the

input's box in the local library (which is still a data box). This is Lisp's fexpr, except the "flavoring" is

attached to the particular input, not to the function (Boxer procedure) as a whole. This is the right

kind of input for messages and other textual data. One need not bother with literal markings of any

sort.

24 the difficulty is not obvious, we will consider it in more detail in section 3.3. Incidentally, one of the "cute" things which

can be done with ports is programming without names, where every reference Is "wired in" with port connectors.

30

The final kind of input uses port semantics, and therefore will probably be used only by advanced

users. The input box is a port to the text of the input. This is the appropriate way to input procedures,

as it avoids certain funarg problems [Steele and Sussman 78a]. For example, if BAR is taken as a nrort

input to a procedure FOO, the environment available to BAR when it is executed in FOO i she

environment where the symbol BAR was typed, outside of FOO. If BAR is a port, naturally the

environment available to it would be the target of the port.25

As far as learning sequence goes, it should be expected that users will use the procedure ("value"

makes a better mnemonic) flavor for their own definitions for quite a while. Numbers predominate as

inputs to early, user-defined procedures. Value inputs will be the default when no flavor is specified.

During that early time, the other flavors serve to relieve the need to understand the subtleties of

referencing in using system primitives or any procedures added to the system (presumably by more

experienced programmers) for the user.

Difficulty with flavored inputs will occur if the procedure's perceived domain of applicability

oveilaps intc situations where another reference mechanism is appropriate. For example, a

misunderstarding may result if a procedure's semantic allows either name or number as an input. A

data input structure will work in typical situations; however, if the user expects to use a variable set to

a number in place of the number, an error will result.26

3.2.4 Two Proposals for Non-Lisp structures

In this section we treat two kinds of functionalities not well served by structures in Lisp, and

accordingly we make proposals for Boxer. The first of these functionalities is message passing.

Consider the concretely realizable process of moving to a distant environment, executing a

procedure. and returning with the result. This is the basis of message passing in Boxer. In particular,

we intend to have special syntax tuned.to this functionality, e.g. IN <environment> <do such and

such>, or TELL <environment> <whatever>. Since Boxer has a fully developed environment structure,

we believe s, ntix is all the dedicated structure message passing needs. Instances will be made by

113e tht ir-pts are always data object when used internally (within the inputting procedure). Passing procedures as
,n " n' haaing a procedure inside a data box. If it is to be executed, an explicit DO (meaning execute the contents of this

:!.V C,. X) vll be needed Outputting prccedures must proceed similarly. Scheme does not link type of object to type of
,.e, tut ,;es syntax for the latter. This allows one to reference procedures as data obieLtss more easily than with Boxei.

•Advancedl sers. of course, cars change input reference mechanism with explicit markers at the place of invocation. Eval
j, I.K. e are used this way in Lisp, though ideally one would prefer a cleaner relationship between control and reference
olchanisms A iuggestiun for a transparent way to do this in some important cases is given in Section 4.

I

31

copying environments, and subclassing by nesting environments. (An example of subclassing

appears in the next section.) There are potentially important gains in having message passing

functionality in Boxer, but also some issues about how convenient and natural such facility will

actually be, which we are in the process of exploring.

The second neglected functionality is the construction of compound objects out of evaluated

parts. Lisp and Logo use constructor functions for this purpose, functions which evaluate their

arguments and output a compound structure constructed of the values. We consider this an

overextension of the control structure of function to an area in which it is not well adapted, at least in

the perception of novice programmers. The reason is simple. Even in Logo, spatial organization is

part of a typical user's molel of a compound object. A list is a series of elements in a row. Why then

can one not use such an organization to specify the "shape" of a compound object to be

constructed? In Logo if the value of :X is "A, LPUT :X [B C] produces the counter-visual result, [B C

A]. Instead, one would like to write something like [B C :X]. Boxer's intent to make spatial

organization pay dividends suggests we should try to do better than Logo. Many Lisps now have a

"back-quote" structure to serve this function, and what we want for Boxer is a cleaner, better

integrated implenentation of the inot?"ting concerns.

We are exploring two possibilities. The first we call geometric outputting. It uses the procedure

box control structure along with the image of a dereferenced data box (or the output of an executed

procedure box) leaving its value in the place where it is executed. Thus, a Boxer procedure will

output all values returned from subordinate procedures or data boxes whose values are not used by

another procedure, and the geometric relationship of those values will be preserved. 1he figure

below gives an example. A procedure box, none of whose subboxes return a value, itself will not

return a value. We are assuming that, like Logo, many of the built-in primitives don't output.

(proc> <data>
-- ---------------- -- --- - - ---- - - - -

<data) I I HELLO 2 I
- I evaluates to -------------

I I HELLO I (0 + 1) I
I I

Figure 3-8: Geometric outputting

There are limits to the usefulness of this idea. It is tuned to "flat" structures both because it

flattens (e.g. HELLO above is "unboxed") and because the use of procedure-invocation control does

not allow unevaluated levels between the top-level and terminal evaluated nodes. If one wants to

32

insert an evaluated object at a low level of the to-be-constructed object, one will have to, for example,

construct the "shape" of the object first, and then assign the computed value.27 But many simple

cases will be taken care of easily.

Geometric outputting may pose implementation efficiency problems. A faliback position would be

to use conventional Lisp outputting (last subtorm supplies value), and have a new constructor type

box which takes over the function of geometric outputting in compound data construction, but

without overhead for usual outputting situations.

3.3 Lexical versus Dynamic Scoping
We have been implementing Boxer on top of a Scheme interpreter, and in general have found

Scheme a congenial implementation language for the semantics of boxes. A natural question is why

doesn't Boxer appropriate as its dominant scoping technique one of Scheme's distinguishing

characteristics, lexical scoping? Deciding on a scoping mechanism has been a difficult task, and the

decosion process makes a good case study because, in the end, modeling considerations have been

pivotal. Below is the case for dynamic scoping.

1. Sometimes one really wants dynamic scoping. Consider environments in the sense of
workspaces discussed earlier. If one takes a procedure to another environment, or
creates an intermediate environment between the procedure's environment and
UNIVERSE, it may well be explicitly for the purpose of altering the meaning of the terms
making up the procedure definition. The figure below shows how dynamic scoping can
be used as a mechanism to create actor-style instances. The environment TURTLE has a
set of state variables, X Y and HEADING, which are manipulated by functions FD
(forward), RT (right turn) and LT (left turn). A turtle instance JOE is created by making a
subenvironment containing its own state variables, but it uses TURTLE's manipulator
code on these. If one wanted JOE to have a different FD behavior, a new FD could just be
added to his library, shielding TURTLE's FD. Other arguments for the usefulness of
dynamic scoping, which are not dependent on Boxer's environment structure, are
contaired in [Steele and Sussman 78b].

2. Dynamic sco ;ng is more natural to Boxer than to non-spatially organized languages like
Scheme This is a judgment on how the experience of using a system supports one or
a nothe- model of its actions. The overt experience of a Boxer user is one of performing

2 71n rome cases, this "hack" will be easier and more obvious than others. For example, one might concretely construct the
ahpe of the compound object once and for all in some local library, and assign the computed values to subordinate boxes as

the valuas become available.

33

TURTLE---
X Y HEADING
FD LT RT

JOE ---------------
II I IXY II

I f HEADING I
I I I------------II I I

I-------------------I
I I I

I TELL JOE FD 100 I
--- I

Figure 3-9: Sending a message to JOE, an instance of TURTLE.

operations in environments which define the meaning of those operations.28 In a Lisp
experience, environments are transitory, set up for function calls and destroyed on exit.
Though Scheme has environments as a basic fact of life, environments are hardly
concrete and manipulable in the transparent way they are in Boxer (e.g. picked up and
moved around with the editor). In Lisp worlds, it is an appropriate aesthetic to avoid
dependence on ihvisible and hard to manipulate things; functions really ought to do the
same thing on each invocation. But if "functions operating in environments" is the
fundamental, concretely represented metaphor of the system, we need worry less about
potential false expectations of modularity and problems debugging them if they occur.
To some extent the problem is also ameliorated by the fact that novices will not be
constructing extremely deep and complex programs which pose stricter modularity
problems.

3. Boxer, particularly with ports, will have most of the functionality of lexical scoping for
advanced users. Some of the important functionality of lexical scoping can be taken over
by the local library, which is copied with the procedure text to the environment of
execution. If one wishes to do some work, one can have an arbitrary amount of the
defining environment carried to the calling environment in this way. Ports can take over
more of the functionality of lexical scoping. The copy-and-execute rule that ports are
copied as ports to their original target, and the meaning of ports, that procedures viewed
in a port are executed in their original environment, imply that ports used in this way
cause precisely the effect of lexical scoping.

4. Lexical scoping simply does not have as simple a surrogate model as dynamic scoping, at
least in spatial terms. The overt signs of this are that one must distinguish the text of a
procedure from the procedure itself [Steele and Sussman 78a]. This runs directly

281n fact, it can be argued that concrete experience in Boxer, e.g. typing a command in some environment and executing it,
teaches dynamic scoping. This is because in such circumstances, there is no distinction between dynamic scoping and lexical
scoping at all. One would expect users to generalize the simpler model, dynamic sccoping. (Point 4 in the text above argues
that it is simpler.)

34

counter to the principle of naive realism we have adopted for Boxer, what you see is what
you have. Procedures and containing environments are separately represented in Boxer
and need not -- probably should not -- be strongly linked in the way lexical scoping does.

Continuing the last point, consider the changes needed to the copy and execute surrogae of

Boxer for lexical scoping. When a procedure is called, one cannot set up an environment at that

place in which to "observe" the actions of the procedure since the free variables in the procedure

refer to non-local entities, entities that exist in the environment in which the procedure was defined.

So after binding inputs (which do, in fact, come from the procedure invocation location) geographical

focus must shift to the defining environment for the execution phase. After execution, one must

return control and any resulting value to the calling environment. The alternative to these shifts in

locus is to give up the identification of containment with "environmentness" basic to our spatial

metaphor. Imagining or actually watching a procedure execute would be considerably complicated

by constantly switching environments. The topology of the calling structure of a procedure stopped in

mid-stream could wind tortuously through the spatial hierarchy. Though the surrogate per se is not

irnnenely more complex for lexical scoping, more of it is invisible and not amenable to learning by

episodes of interpreting what one sees happen. How should one represent, for example, return

pointers? In the dynamic copy and execute model return pointers are unnecessary; procedures

return in place.

Of course, one may argue that it is the spatial copy and execute model which one should abandon,

not lexical scoping. But with lexical scoping, it seems one will always be faced with representing two

hierarchies, the calling hierarchy, which should not be ignored, and the lexical one. Simple models

embodying both hierarchies seem hard to come by.

35

4. The User Interface
We have taken a great deal of time explaining the computational semantic of Boxer and very little

describing the user interface. The primary reason for this is that so much of the functionality of what

is usually called user interface has been built directly into the fundamental meaning of the system.

This seems inescapable in naive realist systems.

Beyond basic functionality, users also need to be able to tailor the interface to their own needs.

This can be done to some extent with the basic structures proposed already: via expanding and

changing the set of single keystroke commands, via port placement, and other examples to come.

Conversely, some of the functionality which one usually needs to have as part of the programming

language can be taken over by the interface. In our case one constructs procedures, and even the

global organization of the system itself, concretely with the editor rather than needing all procedure-

and structure-creating commands to be part of the language. One may wish to have procedures

created as side effects of special function calls, but that is not necessary for most novice

programming.

There is another pair of user interface issues worth mentioning here. Menus are extrenely useful

to unsophisticated users, therefore it is important to retain some of their functionality for Boxer.

Luckily this is not hard to do. Anything the user types is a usable artifact which may be selected and

executed. We have a line oriented default for selection, compatible with the line. oriented

substructuring of boxes. So all a user will have to do to use some text as a menu will be to point at a

line and press the DOlT key. Users will undoubtedly gradually build their own menu interface in some

environment from what they type to try things out. Some might wish to put frequently used commands

in a box labeled MENU, and anyone who makes a sub-environment for others' use should leave such

artifacts around. The important thing is that essentially all the functionality of a menu is available

without the overhead of learning to construct or change special structures.

Boxer will have an interactive parser and prompter to aid users in constructing expressions which

do what they intend. The key is not to make such help obtrusive by burdening the user when he does

not want it, or by introducing modes and screen objects which do not behave like the normal Boxer

mode (note the singular!) and objects. What we have in mind is something like the following: If a user

wants help with a function, he types the name and presses HELP. What appears are input prompts as

boxes labeled by the mnemonic names chosen by the programmer. If defaults were given by being

written into the input box as it appears in the local library of the procedure definition, those will "1

.1

36

appear in the prompt boxes. One could have written additional commentary as a text box in the input

in the same way as a default value. (Remember text boxes are not executed with the code in a box.)

It is important that the prompt boxes are not special; they can be changed in the usual way, e.V, to

change the value which appears as a default.29

The prompt boxes have a natural meaning in the surrogate of the system. Namely, these are the

boxes which determine which kind of input is being used, value (procedure), literal (data) or port.

Aside from documenting that choice at call time, a user can change the type if his local purposes do

not match the selection made at define time.

q Prompt boxes also serve to parse expressions to an arbitrary depth based on the same box

hierarchy used generally in the system. Outputting with no explicit markers allows the execution

surrogate to be imported directly to this situation without loss of any functionality. One can type, for

example, "sin x" in an input box rather than "output sin x" as would be necessary in Logo. In short,

procedure boxes serve parsing functionality as well as procedure, function and (possibly) data-

constructor ones. Because of this multiplicity of use we will likely have "procedure" be the default

type of box. assumed if no other type is written in.

;91n order to beep the system modeless. one would lfi, to be able to cteate m' put prompts by hand as well as using HELP

37

5. Summary
In designing an integrated computational environment the most basic heuristic is to combine

functions, i.e., to try to generate a small set of structures out of which all necessary functionality can

be built. An immediate caveat to this is shallow structuring, that common functionalities must not be

difficult to express in the fundamental structural vocabulary. But deeper and more complex revisions

to the basic heuristic are in order in view of the limiting resource in understanding and controlling a

complex system, namely the materials and capability to construct mental models of such a system on

the part of the human user.

We have found it important to consider a few paradigmatic kinds of models to get proper purchase

on the issues of understandability and learnability. Surrogate models are "replacement machines"

which one can "run" in one's imagination to predict and understand the actual machine. These are

good for prediction and debugging, but are not typically learnable in small increments and lack the

kind of ties to functionality necessary to fluid interaction and to the invention of techniques to solve

problems posed in solution-independent terms. Functional models in which, typically, a structure is

learned as a solution to a particular problem -- "it does the right thing" -- create functional ties, but

are weak in terms of completeness and context invariant application. We think it extremely important

to consider a third class of models, distributed models, in which not only is there no global

mechanistic frame (surrogate) but one may not even be able to identify a single functional frame

which accounts for understanding and remembering in terms of a simple mapping to previously

understood situations. Instead, a number of situation-specific rationalizations, including visual

metaphors and the inheritance of "reasonableness" from frames like natural language altogether

produce an account of some behavior of the system which makes that behavior generalizable, hence

useful as a model.

As an elaboration of these ideas we have sketched the design of a language, Boxer, aimed at being

the basis of an integrated computational environment. Boxer follows the following four principles:

In order to minimize the need for abstract structures mediating between what one sees
and how one understands it, and in order to promote modeling on the basis of visual
rationalization, we have proposed a rather extreme form of naive realism as a guiding
principle: All screen objects are "real" and manipulable in a uniform way. In this way
most of what is usually thought of as user interface is integral to the system.

- In order to take advantage of the character of the' *o display and in order to link into an
important class of pre. existing knowledge users have, Boxer employs a systematic spatial

metaphor, using spatial relationships to express language semantics.

S1/1 lll II11111 llilillilllll2

38

-Because of the strengths of the spatial metaphor and its aptness to computational
systems, we have collapsed static structures to a small core, introducing functional
multiplicity through variation of the basic object, the box, based on nearly naive
functional categories such as procedures and data. All of the functional hierarchies in
Boxer, procedure/subprocedure, hierarchical data, environment (file structure) and
scoping are organized with boxes.

Because of the weakness of naive understanding of reference mechanisms, we have
introduced an expanded set of functionally motivated dynamic structures (flavors of
inputs, syntax for message passing, spatial construction of compound data objects). In
particular, flavored inputs allow the simulation of a broader range of naive reference
mechanisms without intrusion into the surface appearance of the language. As well, care
has been taken to maintain a visualizable surrogate model to aid understanding dynamic
aspects of the system.

What has been left out of this account of the design process? In order to focus clearly on issues of

mental modeling we have not discussed either the consistency or completeness of Boxer as a

computational scheme.3° Nor have we discussed the issue of efficient implementation or the

heuristics we used to trade off implementation against functionality and user understandability.

Naturally, we have proposed a system we think is consistent and efficiently implementable, but this

has hardly been demonstrated.

Finally, our judgments about understandability are based on our assessment of both the difficulties

and occasionally, the surprising successes of students in understanding computational systems (and

to be fair, also on our own experiences and introspection). Even granted our general modeling

considerstions, we have had to make decisions about specifically what knowledge we can count on

users having 3nd applying, e.g., what rationalizations will be made. Obviously a great deal more study

in this area needs to be done, but we do not apologize for trying to use and systematize what we think

we know already. There is no dispute that innovation in terms of both computational structures and

functions is important to making progress in constructing powerful and usable computational

environments. But we think it both possible and proper to begin to regard such innovations as

manifestations and :_lsts of more systematic theories of design based on principles of learnability and

understandability.

30We do not "iean completeness in the Turing sense, but in the sense of treating the main functionalities contemporary
aesththcs demand in a general-purpose computational environment Of course. these aesthetics differ widely, which is one

reason we have avoided the subject.

4q

39

References

(Abelson and diSessa 81],
Abelson, H. and diSessa, A. A.
Turtle Geometry: The Computer as a Medium for Exploring Mathematics.
M.I.T. Press, Cambridge, MA, 1981.

[Baeker 75]
Baeker, R.
Two Systems which Produce Animated Representations of the Execution of Computer

Programs.
ACM SIGCSE Bulletin 7(1), Feb., 1975.

[de Kleer and Brown 811
de Kleer, J. and Brown, J. S.
Mental Models of Physical Mechanisms and their Acquisition.
In Anderson, J. R., editor, Cognitive Skills and their Acquisition. Lawrence Erlbaum, Hillsdale,

NJ, 1981.

[diSessa 82a]
diSessa, A. A.
Unlearning Aristotelian Physics: A Study of Knowledge-Based Learning.
Cognitive Science 6:37-75,1982.

[diSessa 82b]
diSessa, A. A.
Phenomenology and the Evolution of Intuition.
In Gentner, D. and Stevens, A., editors, Mental Models. Lawrence Erlbaum, Hillsdale, NJ,

1982.

[du Boulay et al 81]
du Boulay, B., O'Shea, T. and Monk, J.
The Black Box Inside the Glass Box: Presenting Computing Concepts to Novices.
International Journal of Man-Machine Studies 14:237-250, 1981.

[Gentner and Stevens 821
Gentner, D. and Stevens, A., editors.
Menial Models.
Lawrence Erlbaum, Hillsdale, NJ, 1982.

[Goldberg and Robson 79]
Goldberg, A. and Robson, D. A.
A Metaphor for User Interface Design.
In Proceedings of the University of Hawaii Twelfth Annual Symposium on System Sciences.

Honolulu, January, 1979.

40

[Goldstein and Bobrow 801
Goldstein, I. P. and Bobrow, D. G.
Extending Object-Oriented Programming in Smalltalk.
In Proceedings of the Lisp Conference. Stanford, CA, August, 1980.

[Greenblatt et al 801
Greenblatt, R., Knight, T., Holloway, J. and Moon, D.
A Lisp Machine,
ACM SIGMOD Record 10(4), March, 1980.

[Innocent 82]
Innocent, P. R.
Towards Self-Adaptive Interface Systems.
Interrational Journal of Man-Machine Studies 16:287-299, 1982.

(Lieberman 82]
Lieberman, Henry.
Watching What Your Programs are Doing.
Memo 656, M. I. T. Artificial Intelligence Laboratory, 1982.

[Neves 82]
Neves. D.
Boxer Manual.
M. I.T. Laboratory for Computer Science, 1982.

[Rumelhart and Norman 81]
Rumelhart, D. E. and Norman, D. A.
Analogical Processes in Learning.
In Anderson, J. R., editor, Cognitive Skills and Their Acquisition. Lawrence Erlbaum, Hillsdale,

NJ, 1981.

(Smith et al 82]
Smith. D. C., Irby. C., Kimball, R. and Verplank, B.
Designing the Star User Interface.
Byte :242-282, April, 1982.

[Steele and Sussman 78a]
Steele, G. L. and Sussman, G. J.
The :ivisec' report on Scheme: A Dialect of Lisp.
Memo 452. M. I. T. Artificial Intelligence Laboratory, January, 1978.

[Steele and SJssman 78b]
Stcele, G.L. and Sussman. G. J.
Tne 4rt of the Interpreter.
Memo 453, M. I. T. Artificial Intelligence Laboratory, May, 1978.

41

[Teitelman et a/ 75]
Teitelman, W., et al.
Interlisp Reference Manual.
Xerox Palo Alto Research Center, Palo Alto, CA, 1975.

[Tessler 811
Tessler, Larry.
The Smalltalk Environment.
Byte :90-147, August, 1981.

[Weinreb and Moon 82]
Weinreb, D. and Moon, D.
Lisp Machine Manual.
M.I.T. Artificial Intelligence Laboratory, 1982.

[Young 811
Young, R. M.
The Machine Inside the Machine: Users' Models of Pocket Calculators.
International Journal of Man-Machine Studies 15:51.85, 1981.

[Young 821
Young, R. M.
Surrogates and Mappings: Two Kinds of Conceptual Models for Interactive Devices.
In Gentner, D. and Stevens, A., editors, Mental Models. Lawrence Erlbaum, Hillsdale, NJ,

1982.

Table of Contents
1. Introduction 1

2. Principles of Design 5

2.1 Structure and Function 5
2.2 Mental Models and Surrogates 7

2.3 Functional Models 9

2.4 Distributed Models 11

3. A Proposed Frame for Integration 15

3.1 Static Structures and Functions 16
3.1.1 The Box 16
3.1.2 Boxes as Procedures 17

3.1.3 Boxes as Data Objects 18
3.1.4 Boxes as Environments 19
3.1.5 Kinds of Boxes 21

3.2 Dynamic Structures and Functions 23
3.2.1 Reference 24
3.2.2 A Surrogate Model for Boxer 27
3.2.3 Inputs 29
3.2.4 Two Proposals for Non-Lisp structures 30

3.3 Lexical versus Iynamic Scoping 32

4. The User Interface 35

5. Summary 37

List of Figures
Figu re 3-1: A box with contained boxes. 16
Figure 3-2: A box represents a procedure. 17
Figure 3-3: The local library contains definitions generally useful in the box. 18
Figure 3-4: A vector with labeled subparts. 19
Figure 3-5: Box structure can organize the whole computational environment. 21
Figure 3-6: A data box marks literal reference. 27
Figure 3-7: Ports provide access to other environments for dynamic purposes such as 29

setting a variable. Here the expression MAKE A 5 resides in PLACE2, but is
visible (and could be executed from) PLACE1.

Figure 3-8: Geometric outputting 31
Figure 3-9: Sending a message to JOE, an instance of TURTLE. 33

